1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
use primitive_types::U256;
use zksync_vm2_interface::{opcodes, HeapId, OpcodeType, Tracer};

use super::{
    common::{boilerplate, full_boilerplate},
    monomorphization::{match_boolean, match_reg_imm, monomorphize, parameterize},
    ret::spontaneous_panic,
};
use crate::{
    addressing_modes::{
        Arguments, Destination, DestinationWriter, Immediate1, Register1, Register2,
        RegisterOrImmediate, Source,
    },
    fat_pointer::FatPointer,
    instruction::ExecutionStatus,
    state::State,
    ExecutionEnd, Instruction, VirtualMachine, World,
};

pub(crate) trait HeapFromState {
    type Read: OpcodeType;
    type Write: OpcodeType;

    fn get_heap<T, W>(state: &State<T, W>) -> HeapId;
    fn get_heap_size<T, W>(state: &mut State<T, W>) -> &mut u32;
}

pub(crate) struct Heap;

impl HeapFromState for Heap {
    type Read = opcodes::HeapRead;
    type Write = opcodes::HeapWrite;

    fn get_heap<T, W>(state: &State<T, W>) -> HeapId {
        state.current_frame.heap
    }

    fn get_heap_size<T, W>(state: &mut State<T, W>) -> &mut u32 {
        &mut state.current_frame.heap_size
    }
}

pub(crate) struct AuxHeap;

impl HeapFromState for AuxHeap {
    type Read = opcodes::AuxHeapRead;
    type Write = opcodes::AuxHeapWrite;

    fn get_heap<T, W>(state: &State<T, W>) -> HeapId {
        state.current_frame.aux_heap
    }

    fn get_heap_size<T, W>(state: &mut State<T, W>) -> &mut u32 {
        &mut state.current_frame.aux_heap_size
    }
}

/// The last address to which 32 can be added without overflow.
const LAST_ADDRESS: u32 = u32::MAX - 32;

// Necessary because the obvious code compiles to a comparison of two 256-bit numbers.
#[inline(always)]
fn bigger_than_last_address(x: U256) -> bool {
    x.0[0] > LAST_ADDRESS.into() || x.0[1] != 0 || x.0[2] != 0 || x.0[3] != 0
}

fn load<T: Tracer, W: World<T>, H: HeapFromState, In: Source, const INCREMENT: bool>(
    vm: &mut VirtualMachine<T, W>,
    world: &mut W,
    tracer: &mut T,
) -> ExecutionStatus {
    boilerplate::<H::Read, _, _>(vm, world, tracer, |vm, args| {
        // Pointers need not be masked here even though we do not care about them being pointers.
        // They will panic, though because they are larger than 2^32.
        let (pointer, _) = In::get_with_pointer_flag(args, &mut vm.state);

        let address = pointer.low_u32();

        let new_bound = address.wrapping_add(32);
        if grow_heap::<_, _, H>(&mut vm.state, new_bound).is_err() {
            vm.state.current_frame.pc = spontaneous_panic();
            return;
        };

        // The heap is always grown even when the index nonsensical.
        // TODO PLA-974 revert to not growing the heap on failure as soon as zk_evm is fixed
        if bigger_than_last_address(pointer) {
            let _ = vm.state.use_gas(u32::MAX);
            vm.state.current_frame.pc = spontaneous_panic();
            return;
        }

        let heap = H::get_heap(&vm.state);
        let value = vm.state.heaps[heap].read_u256(address);
        Register1::set(args, &mut vm.state, value);

        if INCREMENT {
            Register2::set(args, &mut vm.state, pointer + 32);
        }
    })
}

fn store<T, W: World<T>, H, In, const INCREMENT: bool, const HOOKING_ENABLED: bool>(
    vm: &mut VirtualMachine<T, W>,
    world: &mut W,
    tracer: &mut T,
) -> ExecutionStatus
where
    T: Tracer,
    H: HeapFromState,
    In: Source,
{
    full_boilerplate::<H::Write, _, _>(vm, world, tracer, |vm, args, _, _| {
        // Pointers need not be masked here even though we do not care about them being pointers.
        // They will panic, though because they are larger than 2^32.
        let (pointer, _) = In::get_with_pointer_flag(args, &mut vm.state);

        let address = pointer.low_u32();
        let value = Register2::get(args, &mut vm.state);

        let new_bound = address.wrapping_add(32);
        if grow_heap::<_, _, H>(&mut vm.state, new_bound).is_err() {
            vm.state.current_frame.pc = spontaneous_panic();
            return ExecutionStatus::Running;
        }

        // The heap is always grown even when the index nonsensical.
        // TODO PLA-974 revert to not growing the heap on failure as soon as zk_evm is fixed
        if bigger_than_last_address(pointer) {
            let _ = vm.state.use_gas(u32::MAX);
            vm.state.current_frame.pc = spontaneous_panic();
            return ExecutionStatus::Running;
        }

        let heap = H::get_heap(&vm.state);
        vm.state.heaps.write_u256(heap, address, value);

        if INCREMENT {
            Register1::set(args, &mut vm.state, pointer + 32);
        }

        if HOOKING_ENABLED && address == vm.settings.hook_address {
            ExecutionStatus::Stopped(ExecutionEnd::SuspendedOnHook(value.as_u32()))
        } else {
            ExecutionStatus::Running
        }
    })
}

/// Pays for more heap space. Doesn't acually grow the heap.
/// That distinction is necessary because the bootloader gets `u32::MAX` heap for free.
pub(crate) fn grow_heap<T, W, H: HeapFromState>(
    state: &mut State<T, W>,
    new_bound: u32,
) -> Result<(), ()> {
    let already_paid = H::get_heap_size(state);
    if *already_paid < new_bound {
        let to_pay = new_bound - *already_paid;
        *already_paid = new_bound;
        state.use_gas(to_pay)?;
    }

    Ok(())
}

fn load_pointer<T: Tracer, W: World<T>, const INCREMENT: bool>(
    vm: &mut VirtualMachine<T, W>,
    world: &mut W,
    tracer: &mut T,
) -> ExecutionStatus {
    boilerplate::<opcodes::PointerRead, _, _>(vm, world, tracer, |vm, args| {
        let (input, input_is_pointer) = Register1::get_with_pointer_flag(args, &mut vm.state);
        if !input_is_pointer {
            vm.state.current_frame.pc = spontaneous_panic();
            return;
        }
        let pointer = FatPointer::from(input);

        // Usually, we just read zeroes instead of out-of-bounds bytes
        // but if offset + 32 is not representable, we panic, even if we could've read some bytes.
        // This is not a bug, this is how it must work to be backwards compatible.
        if pointer.offset > LAST_ADDRESS {
            vm.state.current_frame.pc = spontaneous_panic();
            return;
        };

        let start = pointer.start + pointer.offset.min(pointer.length);
        let end = start.saturating_add(32).min(pointer.start + pointer.length);

        let value = vm.state.heaps[pointer.memory_page].read_u256_partially(start..end);
        Register1::set(args, &mut vm.state, value);

        if INCREMENT {
            // This addition does not overflow because we checked that the offset is small enough above.
            Register2::set_fat_ptr(args, &mut vm.state, input + 32);
        }
    })
}

impl<T: Tracer, W: World<T>> Instruction<T, W> {
    /// Creates a [`HeapRead`](opcodes::HeapRead) instruction with the provided params.
    pub fn from_heap_read(
        src: RegisterOrImmediate,
        out: Register1,
        incremented_out: Option<Register2>,
        arguments: Arguments,
    ) -> Self {
        Self::from_read::<Heap>(src, out, incremented_out, arguments)
    }

    /// Creates an [`AuxHeapRead`](opcodes::AuxHeapRead) instruction with the provided params.
    pub fn from_aux_heap_read(
        src: RegisterOrImmediate,
        out: Register1,
        incremented_out: Option<Register2>,
        arguments: Arguments,
    ) -> Self {
        Self::from_read::<AuxHeap>(src, out, incremented_out, arguments)
    }

    fn from_read<H: HeapFromState>(
        src: RegisterOrImmediate,
        out: Register1,
        incremented_out: Option<Register2>,
        arguments: Arguments,
    ) -> Self {
        let mut arguments = arguments.write_source(&src).write_destination(&out);

        let increment = incremented_out.is_some();
        if let Some(out2) = incremented_out {
            out2.write_destination(&mut arguments);
        }

        Self {
            handler: monomorphize!(load [T W H] match_reg_imm src match_boolean increment),
            arguments,
        }
    }

    /// Creates a [`HeapWrite`](opcodes::HeapWrite) instruction with the provided params.
    pub fn from_heap_write(
        src1: RegisterOrImmediate,
        src2: Register2,
        incremented_out: Option<Register1>,
        arguments: Arguments,
        should_hook: bool,
    ) -> Self {
        Self::from_write::<Heap>(src1, src2, incremented_out, arguments, should_hook)
    }

    /// Creates an [`AuxHeapWrite`](opcodes::AuxHeapWrite) instruction with the provided params.
    pub fn from_aux_heap_store(
        src1: RegisterOrImmediate,
        src2: Register2,
        incremented_out: Option<Register1>,
        arguments: Arguments,
    ) -> Self {
        Self::from_write::<AuxHeap>(src1, src2, incremented_out, arguments, false)
    }

    fn from_write<H: HeapFromState>(
        src1: RegisterOrImmediate,
        src2: Register2,
        incremented_out: Option<Register1>,
        arguments: Arguments,
        should_hook: bool,
    ) -> Self {
        let increment = incremented_out.is_some();
        Self {
            handler: monomorphize!(store [T W H] match_reg_imm src1 match_boolean increment match_boolean should_hook),
            arguments: arguments
                .write_source(&src1)
                .write_source(&src2)
                .write_destination(&incremented_out),
        }
    }

    /// Creates an [`PointerRead`](opcodes::PointerRead) instruction with the provided params.
    pub fn from_pointer_read(
        src: Register1,
        out: Register1,
        incremented_out: Option<Register2>,
        arguments: Arguments,
    ) -> Self {
        let increment = incremented_out.is_some();
        Self {
            handler: monomorphize!(load_pointer [T W] match_boolean increment),
            arguments: arguments
                .write_source(&src)
                .write_destination(&out)
                .write_destination(&incremented_out),
        }
    }
}