1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
use std::{
    fmt, mem,
    ops::{Index, Range},
};

use primitive_types::U256;
use zksync_vm2_interface::HeapId;

/// Heap page size in bytes.
const HEAP_PAGE_SIZE: usize = 1 << 12;

/// Heap page.
#[derive(Debug, Clone, PartialEq)]
struct HeapPage(Box<[u8; HEAP_PAGE_SIZE]>);

impl Default for HeapPage {
    fn default() -> Self {
        let boxed_slice: Box<[u8]> = vec![0_u8; HEAP_PAGE_SIZE].into();
        Self(boxed_slice.try_into().unwrap())
    }
}

#[derive(Debug, Clone, Default)]
pub(crate) struct Heap {
    pages: Vec<Option<HeapPage>>,
}

// We never remove `HeapPage`s (even after rollbacks – although we do zero all added pages in this case),
// we allow additional pages to be present if they are zeroed.
impl PartialEq for Heap {
    fn eq(&self, other: &Self) -> bool {
        for i in 0..self.pages.len().max(other.pages.len()) {
            let this_page = self.pages.get(i).and_then(Option::as_ref);
            let other_page = other.pages.get(i).and_then(Option::as_ref);
            match (this_page, other_page) {
                (Some(this_page), Some(other_page)) => {
                    if this_page != other_page {
                        return false;
                    }
                }
                (Some(page), None) | (None, Some(page)) => {
                    if page.0.iter().any(|&byte| byte != 0) {
                        return false;
                    }
                }
                (None, None) => { /* do nothing */ }
            }
        }
        true
    }
}

impl Heap {
    fn from_bytes(bytes: &[u8], pagepool: &mut PagePool) -> Self {
        let pages = bytes
            .chunks(HEAP_PAGE_SIZE)
            .map(|bytes| {
                Some(if let Some(mut page) = pagepool.get_dirty_page() {
                    page.0[..bytes.len()].copy_from_slice(bytes);
                    page.0[bytes.len()..].fill(0);
                    page
                } else {
                    let mut page = HeapPage::default();
                    page.0[..bytes.len()].copy_from_slice(bytes);
                    page
                })
            })
            .collect();
        Self { pages }
    }

    pub(crate) fn read_u256(&self, start_address: u32) -> U256 {
        let (page_idx, offset_in_page) = address_to_page_offset(start_address);
        let bytes_in_page = HEAP_PAGE_SIZE - offset_in_page;

        if bytes_in_page >= 32 {
            if let Some(page) = self.page(page_idx) {
                U256::from_big_endian(&page.0[offset_in_page..offset_in_page + 32])
            } else {
                U256::zero()
            }
        } else {
            let mut result = [0u8; 32];
            if let Some(page) = self.page(page_idx) {
                for (res, src) in result.iter_mut().zip(&page.0[offset_in_page..]) {
                    *res = *src;
                }
            }
            if let Some(page) = self.page(page_idx + 1) {
                for (res, src) in result[bytes_in_page..].iter_mut().zip(&*page.0) {
                    *res = *src;
                }
            }
            U256::from_big_endian(&result)
        }
    }

    pub(crate) fn read_u256_partially(&self, range: Range<u32>) -> U256 {
        let (page_idx, offset_in_page) = address_to_page_offset(range.start);
        let length = range.len();
        let bytes_in_page = length.min(HEAP_PAGE_SIZE - offset_in_page);

        let mut result = [0u8; 32];
        if let Some(page) = self.page(page_idx) {
            for (res, src) in result[..bytes_in_page]
                .iter_mut()
                .zip(&page.0[offset_in_page..])
            {
                *res = *src;
            }
        }
        if let Some(page) = self.page(page_idx + 1) {
            for (res, src) in result[bytes_in_page..length].iter_mut().zip(&*page.0) {
                *res = *src;
            }
        }
        U256::from_big_endian(&result)
    }

    pub(crate) fn read_range_big_endian(&self, range: Range<u32>) -> Vec<u8> {
        let length = range.len();

        let (mut page_idx, mut offset_in_page) = address_to_page_offset(range.start);
        let mut result = Vec::with_capacity(length);
        while result.len() < length {
            let len_in_page = (length - result.len()).min(HEAP_PAGE_SIZE - offset_in_page);
            if let Some(page) = self.page(page_idx) {
                result.extend_from_slice(&page.0[offset_in_page..(offset_in_page + len_in_page)]);
            } else {
                result.resize(result.len() + len_in_page, 0);
            }
            page_idx += 1;
            offset_in_page = 0;
        }
        result
    }

    /// Needed only by tracers
    pub(crate) fn read_byte(&self, address: u32) -> u8 {
        let (page, offset) = address_to_page_offset(address);
        self.page(page).map_or(0, |page| page.0[offset])
    }

    fn page(&self, idx: usize) -> Option<&HeapPage> {
        self.pages.get(idx)?.as_ref()
    }

    fn get_or_insert_page(&mut self, idx: usize, pagepool: &mut PagePool) -> &mut HeapPage {
        if self.pages.len() <= idx {
            self.pages.resize(idx + 1, None);
        }
        self.pages[idx].get_or_insert_with(|| pagepool.allocate_page())
    }

    fn write_u256(&mut self, start_address: u32, value: U256, pagepool: &mut PagePool) {
        let (page_idx, offset_in_page) = address_to_page_offset(start_address);
        let bytes_in_page = HEAP_PAGE_SIZE - offset_in_page;
        let page = self.get_or_insert_page(page_idx, pagepool);

        if bytes_in_page >= 32 {
            value.to_big_endian(&mut page.0[offset_in_page..offset_in_page + 32]);
        } else {
            let mut bytes = [0; 32];
            value.to_big_endian(&mut bytes);
            let mut bytes_iter = bytes.into_iter();

            for (dst, src) in page.0[offset_in_page..].iter_mut().zip(bytes_iter.by_ref()) {
                *dst = src;
            }

            let page = self.get_or_insert_page(page_idx + 1, pagepool);
            for (dst, src) in page.0.iter_mut().zip(bytes_iter) {
                *dst = src;
            }
        }
    }
}

#[inline(always)]
fn address_to_page_offset(address: u32) -> (usize, usize) {
    let offset = address as usize;
    (offset >> 12, offset & (HEAP_PAGE_SIZE - 1))
}

#[derive(Debug, Clone)]
pub(crate) struct Heaps {
    heaps: Vec<Heap>,
    pagepool: PagePool,
    bootloader_heap_rollback_info: Vec<(u32, U256)>,
    bootloader_aux_rollback_info: Vec<(u32, U256)>,
}

impl Heaps {
    pub(crate) fn new(calldata: &[u8]) -> Self {
        // The first heap can never be used because heap zero
        // means the current heap in precompile calls
        let mut pagepool = PagePool::default();
        Self {
            heaps: vec![
                Heap::default(),
                Heap::from_bytes(calldata, &mut pagepool),
                Heap::default(),
                Heap::default(),
            ],
            pagepool,
            bootloader_heap_rollback_info: vec![],
            bootloader_aux_rollback_info: vec![],
        }
    }

    pub(crate) fn allocate(&mut self) -> HeapId {
        self.allocate_inner(&[])
    }

    pub(crate) fn allocate_with_content(&mut self, content: &[u8]) -> HeapId {
        self.allocate_inner(content)
    }

    fn allocate_inner(&mut self, memory: &[u8]) -> HeapId {
        let id = u32::try_from(self.heaps.len()).expect("heap ID overflow");
        let id = HeapId::from_u32_unchecked(id);
        self.heaps
            .push(Heap::from_bytes(memory, &mut self.pagepool));
        id
    }

    pub(crate) fn deallocate(&mut self, heap: HeapId) {
        let heap = mem::take(&mut self.heaps[heap.as_u32() as usize]);
        for page in heap.pages.into_iter().flatten() {
            self.pagepool.recycle_page(page);
        }
    }

    pub(crate) fn write_u256(&mut self, heap: HeapId, start_address: u32, value: U256) {
        if heap == HeapId::FIRST {
            let prev_value = self[heap].read_u256(start_address);
            self.bootloader_heap_rollback_info
                .push((start_address, prev_value));
        } else if heap == HeapId::FIRST_AUX {
            let prev_value = self[heap].read_u256(start_address);
            self.bootloader_aux_rollback_info
                .push((start_address, prev_value));
        }
        self.heaps[heap.as_u32() as usize].write_u256(start_address, value, &mut self.pagepool);
    }

    pub(crate) fn snapshot(&self) -> (usize, usize) {
        (
            self.bootloader_heap_rollback_info.len(),
            self.bootloader_aux_rollback_info.len(),
        )
    }

    pub(crate) fn rollback(&mut self, (heap_snap, aux_snap): (usize, usize)) {
        for (address, value) in self.bootloader_heap_rollback_info.drain(heap_snap..).rev() {
            self.heaps[HeapId::FIRST.as_u32() as usize].write_u256(
                address,
                value,
                &mut self.pagepool,
            );
        }

        for (address, value) in self.bootloader_aux_rollback_info.drain(aux_snap..).rev() {
            self.heaps[HeapId::FIRST_AUX.as_u32() as usize].write_u256(
                address,
                value,
                &mut self.pagepool,
            );
        }
    }

    pub(crate) fn delete_history(&mut self) {
        self.bootloader_heap_rollback_info.clear();
        self.bootloader_aux_rollback_info.clear();
    }
}

impl Index<HeapId> for Heaps {
    type Output = Heap;

    fn index(&self, index: HeapId) -> &Self::Output {
        &self.heaps[index.as_u32() as usize]
    }
}

// Since we never remove `Heap` entries (even after rollbacks – although we do deallocate heaps in this case),
// we allow additional empty heaps at the end of `Heaps`.
impl PartialEq for Heaps {
    fn eq(&self, other: &Self) -> bool {
        for i in 0..self.heaps.len().max(other.heaps.len()) {
            if self.heaps.get(i).unwrap_or(&Heap::default())
                != other.heaps.get(i).unwrap_or(&Heap::default())
            {
                return false;
            }
        }
        true
    }
}

#[derive(Default, Clone)]
struct PagePool(Vec<HeapPage>);

impl fmt::Debug for PagePool {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter
            .debug_struct("PagePool")
            .field("len", &self.0.len())
            .finish_non_exhaustive()
    }
}

impl PagePool {
    fn allocate_page(&mut self) -> HeapPage {
        self.get_dirty_page()
            .map(|mut page| {
                page.0.fill(0);
                page
            })
            .unwrap_or_default()
    }

    fn get_dirty_page(&mut self) -> Option<HeapPage> {
        self.0.pop()
    }

    fn recycle_page(&mut self, page: HeapPage) {
        self.0.push(page);
    }
}

#[cfg(test)]
#[allow(clippy::cast_possible_truncation)]
mod tests {
    use super::*;

    fn repeat_byte(byte: u8) -> U256 {
        U256::from_little_endian(&[byte; 32])
    }

    fn test_heap_write_resizes(recycled_pages: &mut PagePool) {
        let mut heap = Heap::default();
        heap.write_u256(5, 1.into(), recycled_pages);
        assert_eq!(heap.pages.len(), 1);
        assert_eq!(heap.read_u256(5), 1.into());

        // Check writing at a page boundary
        heap.write_u256(
            HEAP_PAGE_SIZE as u32 - 32,
            repeat_byte(0xaa),
            recycled_pages,
        );
        assert_eq!(heap.pages.len(), 1);
        assert_eq!(
            heap.read_u256(HEAP_PAGE_SIZE as u32 - 32),
            repeat_byte(0xaa)
        );

        for offset in (1..=31).rev() {
            heap.write_u256(
                HEAP_PAGE_SIZE as u32 - offset,
                repeat_byte(offset as u8),
                recycled_pages,
            );
            assert_eq!(heap.pages.len(), 2);
            assert_eq!(
                heap.read_u256(HEAP_PAGE_SIZE as u32 - offset),
                repeat_byte(offset as u8)
            );
        }

        // check reading at a page boundary from a missing page
        for offset in 0..32 {
            assert_eq!(heap.read_u256((1 << 20) - offset), 0.into());
        }

        heap.write_u256(1 << 20, repeat_byte(0xff), recycled_pages);
        assert_eq!(heap.pages.len(), 257);
        assert_eq!(heap.pages.iter().flatten().count(), 3);
        assert_eq!(heap.read_u256(1 << 20), repeat_byte(0xff));
    }

    #[test]
    fn heap_write_resizes() {
        test_heap_write_resizes(&mut PagePool::default());
    }

    #[test]
    fn heap_write_resizes_with_recycled_pages() {
        test_heap_write_resizes(&mut populated_pagepool());
    }

    fn populated_pagepool() -> PagePool {
        let mut pagepool = PagePool::default();
        for _ in 0..10 {
            let mut page = HeapPage::default();
            // Fill pages with 0xff bytes to detect not clearing pages
            page.0.fill(0xff);
            pagepool.recycle_page(page);
        }
        pagepool
    }

    #[test]
    fn reading_heap_range() {
        let mut heap = Heap::default();
        let offsets = [
            0_u32,
            10,
            HEAP_PAGE_SIZE as u32 - 10,
            HEAP_PAGE_SIZE as u32 + 10,
            (1 << 20) - 10,
            1 << 20,
            (1 << 20) + 10,
        ];
        for offset in offsets {
            for length in [0, 1, 10, 31, 32, 1_024, 32_768] {
                let data = heap.read_range_big_endian(offset..offset + length);
                assert_eq!(data.len(), length as usize);
                assert!(data.iter().all(|&byte| byte == 0));
            }
        }

        for (i, offset) in offsets.into_iter().enumerate() {
            let bytes: Vec<_> = (i..i + 32).map(|byte| byte as u8).collect();
            heap.write_u256(
                offset,
                U256::from_big_endian(&bytes),
                &mut PagePool::default(),
            );
            for length in 1..=32 {
                let data = heap.read_range_big_endian(offset..offset + length);
                assert_eq!(data, bytes[..length as usize]);
            }
        }
    }

    #[test]
    fn heap_partial_u256_reads() {
        let mut heap = Heap::default();
        let bytes: Vec<_> = (1..=32).collect();
        heap.write_u256(0, U256::from_big_endian(&bytes), &mut PagePool::default());
        for length in 1..=32 {
            let read = heap.read_u256_partially(0..length);
            // Mask is 0xff...ff00..00, where the number of `0xff` bytes is the number of read bytes
            let mask = U256::MAX << (8 * (32 - length));
            assert_eq!(read, U256::from_big_endian(&bytes) & mask);
        }

        // The same test at the page boundary.
        let offset = HEAP_PAGE_SIZE as u32 - 10;
        heap.write_u256(
            offset,
            U256::from_big_endian(&bytes),
            &mut PagePool::default(),
        );
        for length in 1..=32 {
            let read = heap.read_u256_partially(offset..offset + length);
            let mask = U256::MAX << (8 * (32 - length));
            assert_eq!(read, U256::from_big_endian(&bytes) & mask);
        }
    }

    #[test]
    fn heap_read_out_of_bounds() {
        let heap = Heap::default();
        assert_eq!(heap.read_u256(5), 0.into());
    }

    fn test_creating_heap_from_bytes(recycled_pages: &mut PagePool) {
        let bytes: Vec<_> = (0..=u8::MAX).collect();
        let heap = Heap::from_bytes(&bytes, recycled_pages);
        assert_eq!(heap.pages.len(), 1);

        assert_eq!(heap.read_range_big_endian(0..256), bytes);
        for offset in 0..256 - 32 {
            let value = heap.read_u256(offset as u32);
            assert_eq!(value, U256::from_big_endian(&bytes[offset..offset + 32]));
        }

        // Test larger heap with multiple pages.
        let bytes: Vec<_> = (0..HEAP_PAGE_SIZE * 5 / 2).map(|byte| byte as u8).collect();
        let heap = Heap::from_bytes(&bytes, recycled_pages);
        assert_eq!(heap.pages.len(), 3);

        assert_eq!(
            heap.read_range_big_endian(0..HEAP_PAGE_SIZE as u32 * 5 / 2),
            bytes
        );
        for len in [
            1,
            10,
            100,
            HEAP_PAGE_SIZE / 3,
            HEAP_PAGE_SIZE / 2,
            HEAP_PAGE_SIZE,
            2 * HEAP_PAGE_SIZE,
        ] {
            for offset in 0..(HEAP_PAGE_SIZE * 5 / 2 - len) {
                assert_eq!(
                    heap.read_range_big_endian(offset as u32..(offset + len) as u32),
                    bytes[offset..offset + len]
                );
            }
        }

        for offset in 0..HEAP_PAGE_SIZE * 5 / 2 - 32 {
            let value = heap.read_u256(offset as u32);
            assert_eq!(value, U256::from_big_endian(&bytes[offset..offset + 32]));
        }
    }

    #[test]
    fn creating_heap_from_bytes() {
        test_creating_heap_from_bytes(&mut PagePool::default());
    }

    #[test]
    fn creating_heap_from_bytes_with_recycling() {
        test_creating_heap_from_bytes(&mut populated_pagepool());
    }

    #[test]
    fn rolling_back_heaps() {
        let mut heaps = Heaps::new(b"test");
        let written_value = U256::from(123_456_789) << 224; // writes bytes 0..4
        heaps.write_u256(HeapId::FIRST, 0, written_value);
        assert_eq!(heaps[HeapId::FIRST].read_u256(0), written_value);
        heaps.write_u256(HeapId::FIRST_AUX, 0, 42.into());
        assert_eq!(heaps[HeapId::FIRST_AUX].read_u256(0), 42.into());

        let snapshot = heaps.snapshot();
        assert_eq!(snapshot, (1, 1));

        heaps.write_u256(HeapId::FIRST, 7, U256::MAX);
        assert_eq!(
            heaps[HeapId::FIRST].read_u256(0),
            written_value + (U256::MAX >> 56)
        );
        heaps.write_u256(HeapId::FIRST_AUX, 16, U256::MAX);
        assert_eq!(heaps[HeapId::FIRST_AUX].read_u256(16), U256::MAX);

        heaps.rollback(snapshot);
        assert_eq!(heaps[HeapId::FIRST].read_u256(0), written_value);
        assert_eq!(heaps[HeapId::FIRST_AUX].read_u256(0), 42.into());
        assert_eq!(heaps.bootloader_heap_rollback_info.len(), 1);
        assert_eq!(heaps.bootloader_aux_rollback_info.len(), 1);
    }
}