anvil_zksync_l1_sidecar/
l1_sender.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
use crate::contracts;
use crate::zkstack_config::ZkstackConfig;
use alloy::consensus::{SidecarBuilder, SimpleCoder};
use alloy::network::{ReceiptResponse, TransactionBuilder, TransactionBuilder4844};
use alloy::providers::Provider;
use alloy::rpc::types::TransactionRequest;
use std::sync::Arc;
use tokio::sync::{mpsc, oneshot};
use zksync_mini_merkle_tree::MiniMerkleTree;
use zksync_types::commitment::L1BatchWithMetadata;
use zksync_types::hasher::keccak::KeccakHasher;
use zksync_types::l1::L1Tx;
use zksync_types::{Address, L2ChainId, H256};

/// Node component responsible for sending transactions to L1.
pub struct L1Sender {
    provider: Arc<dyn Provider + 'static>,
    l2_chain_id: L2ChainId,
    validator_timelock_addr: Address,
    command_receiver: mpsc::Receiver<Command>,
    last_committed_l1_batch: L1BatchWithMetadata,
    last_proved_l1_batch: L1BatchWithMetadata,
    /// Merkle tree with all priority transactions ever processed.
    l1_tx_merkle_tree: MiniMerkleTree<L1Tx>,
}

impl L1Sender {
    /// Initializes a new [`L1Sender`] that will send transaction using supplied provider. Assumes
    /// that zkstack config matches L1 configuration at the other end of provider.
    ///
    /// Resulting [`L1Sender`] is expected to be consumed by calling [`Self::run`]. Additionally,
    /// returns a cloneable handle that can be used to send requests to this instance of [`L1Sender`].
    pub fn new(
        zkstack_config: &ZkstackConfig,
        genesis_metadata: L1BatchWithMetadata,
        provider: Arc<dyn Provider + 'static>,
    ) -> (Self, L1SenderHandle) {
        let (command_sender, command_receiver) = mpsc::channel(128);
        let this = Self {
            provider,
            l2_chain_id: zkstack_config.genesis.l2_chain_id,
            validator_timelock_addr: zkstack_config.contracts.l1.validator_timelock_addr,
            command_receiver,
            last_committed_l1_batch: genesis_metadata.clone(),
            last_proved_l1_batch: genesis_metadata,
            l1_tx_merkle_tree: MiniMerkleTree::<L1Tx>::from_hashes(
                KeccakHasher,
                std::iter::empty(),
                None,
            ),
        };
        let handle = L1SenderHandle { command_sender };
        (this, handle)
    }

    /// Runs L1 sender indefinitely thus processing requests received from any of the matching
    /// handles.
    pub async fn run(mut self) -> anyhow::Result<()> {
        while let Some(command) = self.command_receiver.recv().await {
            match command {
                Command::Commit(batch, reply) => self.commit(batch, reply).await,
                Command::Prove(batch, reply) => self.prove(batch, reply).await,
                Command::Execute(batch, reply) => self.execute(batch, reply).await,
            }
        }

        tracing::trace!("channel has been closed; stopping L1 sender");
        Ok(())
    }
}

impl L1Sender {
    async fn commit(
        &mut self,
        batch: L1BatchWithMetadata,
        reply: oneshot::Sender<anyhow::Result<H256>>,
    ) {
        let result = self.commit_fallible(&batch).await;
        if result.is_ok() {
            // Commitment was successful, update last committed batch
            self.last_committed_l1_batch = batch;
        }

        // Reply to sender if we can, otherwise hold result for further processing
        let result = if let Err(result) = reply.send(result) {
            tracing::info!("failed to reply as receiver has been dropped");
            result
        } else {
            return;
        };
        // Not much we can do with an error at this level so we just print it
        if let Err(err) = result {
            tracing::error!("failed to commit batch: {:#?}", err);
        }
    }

    async fn commit_fallible(&self, batch: &L1BatchWithMetadata) -> anyhow::Result<H256> {
        // Create a blob sidecar with empty data
        let sidecar = SidecarBuilder::<SimpleCoder>::from_slice(&[]).build()?;

        let call = contracts::commit_batches_shared_bridge_call(
            self.l2_chain_id,
            &self.last_committed_l1_batch,
            batch,
        );

        let gas_price = self.provider.get_gas_price().await?;
        let eip1559_est = self.provider.estimate_eip1559_fees().await?;
        let tx = TransactionRequest::default()
            .with_to(self.validator_timelock_addr.0.into())
            .with_max_fee_per_blob_gas(gas_price)
            .with_max_fee_per_gas(eip1559_est.max_fee_per_gas)
            .with_max_priority_fee_per_gas(eip1559_est.max_priority_fee_per_gas)
            // Default value for `max_aggregated_tx_gas` from zksync-era, should always be enough
            .with_gas_limit(15000000)
            .with_call(&call)
            .with_blob_sidecar(sidecar);

        let pending_tx = self.provider.send_transaction(tx).await?;
        tracing::debug!(
            batch = batch.header.number.0,
            pending_tx_hash = ?pending_tx.tx_hash(),
            "batch commit transaction sent to L1"
        );

        let receipt = pending_tx.get_receipt().await?;
        if receipt.status() {
            // We could also look at tx receipt's logs for a corresponding `BlockCommit` event but
            // the existing logic is likely good enough for a test node.
            tracing::info!(
                batch = batch.header.number.0,
                tx_hash = ?receipt.transaction_hash,
                block_number = receipt.block_number.unwrap(),
                "batch committed to L1",
            );
        } else {
            tracing::error!(
                batch = batch.header.number.0,
                tx_hash = ?receipt.transaction_hash,
                block_number = receipt.block_number.unwrap(),
                "commit transaction failed"
            );
            anyhow::bail!(
                "commit transaction failed, see L1 transaction's trace for more details (tx_hash='{:?}')",
                receipt.transaction_hash
            );
        }

        Ok(receipt.transaction_hash().0.into())
    }

    async fn prove(
        &mut self,
        batch: L1BatchWithMetadata,
        reply: oneshot::Sender<anyhow::Result<H256>>,
    ) {
        let result = self.prove_fallible(&batch).await;
        if result.is_ok() {
            // Proving was successful, update last proved batch
            self.last_proved_l1_batch = batch;
        }

        // Reply to sender if we can, otherwise hold result for further processing
        let result = if let Err(result) = reply.send(result) {
            tracing::info!("failed to reply as receiver has been dropped");
            result
        } else {
            return;
        };
        // Not much we can do with an error at this level so we just print it
        if let Err(err) = result {
            tracing::error!("failed to prove batch: {:#?}", err);
        }
    }

    async fn prove_fallible(&self, batch: &L1BatchWithMetadata) -> anyhow::Result<H256> {
        // Create a blob sidecar with empty data
        let sidecar = SidecarBuilder::<SimpleCoder>::from_slice(&[]).build()?;

        let call = contracts::prove_batches_shared_bridge_call(
            self.l2_chain_id,
            &self.last_proved_l1_batch,
            batch,
        );

        let gas_price = self.provider.get_gas_price().await?;
        let eip1559_est = self.provider.estimate_eip1559_fees().await?;
        let tx = TransactionRequest::default()
            .with_to(self.validator_timelock_addr.0.into())
            .with_max_fee_per_blob_gas(gas_price)
            .with_max_fee_per_gas(eip1559_est.max_fee_per_gas)
            .with_max_priority_fee_per_gas(eip1559_est.max_priority_fee_per_gas)
            // Default value for `max_aggregated_tx_gas` from zksync-era, should always be enough
            .with_gas_limit(15000000)
            .with_call(&call)
            .with_blob_sidecar(sidecar);

        let pending_tx = self.provider.send_transaction(tx).await?;
        tracing::debug!(
            batch = batch.header.number.0,
            pending_tx_hash = ?pending_tx.tx_hash(),
            "batch prove transaction sent to L1"
        );

        let receipt = pending_tx.get_receipt().await?;
        if receipt.status() {
            // We could also look at tx receipt's logs for a corresponding `BlocksVerification` event but
            // the existing logic is likely good enough for a test node.
            tracing::info!(
                batch = batch.header.number.0,
                tx_hash = ?receipt.transaction_hash,
                block_number = receipt.block_number.unwrap(),
                "batch proved on L1",
            );
        } else {
            tracing::error!(
                batch = batch.header.number.0,
                tx_hash = ?receipt.transaction_hash,
                block_number = receipt.block_number.unwrap(),
                "prove transaction failed"
            );
            anyhow::bail!(
                "prove transaction failed, see L1 transaction's trace for more details (tx_hash='{:?}')",
                receipt.transaction_hash
            );
        }

        Ok(receipt.transaction_hash().0.into())
    }

    async fn execute(
        &mut self,
        batch: L1BatchWithMetadata,
        reply: oneshot::Sender<anyhow::Result<H256>>,
    ) {
        let result = self.execute_fallible(&batch).await;

        // Reply to sender if we can, otherwise hold result for further processing
        let result = if let Err(result) = reply.send(result) {
            tracing::info!("failed to reply as receiver has been dropped");
            result
        } else {
            return;
        };
        // Not much we can do with an error at this level so we just print it
        if let Err(err) = result {
            tracing::error!("failed to execute batch: {:#?}", err);
        }
    }

    async fn execute_fallible(&mut self, batch: &L1BatchWithMetadata) -> anyhow::Result<H256> {
        // Create a blob sidecar with empty data
        let sidecar = SidecarBuilder::<SimpleCoder>::from_slice(&[]).build()?;

        // Push new priority transactions into the Merkle tree
        for priority_op in &batch.header.priority_ops_onchain_data {
            self.l1_tx_merkle_tree
                .push_hash(priority_op.onchain_data_hash);
        }
        // Generate execution call based on the batch and the new priority transaction Merkle tree
        let call = contracts::execute_batches_shared_bridge_call(
            self.l2_chain_id,
            batch,
            &self.l1_tx_merkle_tree,
        );

        let gas_price = self.provider.get_gas_price().await?;
        let eip1559_est = self.provider.estimate_eip1559_fees().await?;
        let tx = TransactionRequest::default()
            .with_to(self.validator_timelock_addr.0.into())
            .with_max_fee_per_blob_gas(gas_price)
            .with_max_fee_per_gas(eip1559_est.max_fee_per_gas)
            .with_max_priority_fee_per_gas(eip1559_est.max_priority_fee_per_gas)
            // Default value for `max_aggregated_tx_gas` from zksync-era, should always be enough
            .with_gas_limit(15000000)
            .with_call(&call)
            .with_blob_sidecar(sidecar);

        let pending_tx = self.provider.send_transaction(tx).await?;
        tracing::debug!(
            batch = batch.header.number.0,
            pending_tx_hash = ?pending_tx.tx_hash(),
            "batch execute transaction sent to L1"
        );

        let receipt = pending_tx.get_receipt().await?;
        if receipt.status() {
            // We could also look at tx receipt's logs for a corresponding `BlocksVerification` event but
            // the existing logic is likely good enough for a test node.
            tracing::info!(
                batch = batch.header.number.0,
                tx_hash = ?receipt.transaction_hash,
                block_number = receipt.block_number.unwrap(),
                "batch executed on L1",
            );
        } else {
            tracing::error!(
                batch = batch.header.number.0,
                tx_hash = ?receipt.transaction_hash,
                block_number = receipt.block_number.unwrap(),
                "execute transaction failed"
            );
            anyhow::bail!(
                "execute transaction failed, see L1 transaction's trace for more details (tx_hash='{:?}')",
                receipt.transaction_hash
            );
        }

        Ok(receipt.transaction_hash().0.into())
    }
}

/// A cheap cloneable handle to a [`L1Sender`] instance that can send requests and await for them to
/// be processed.
#[derive(Clone, Debug)]
pub struct L1SenderHandle {
    command_sender: mpsc::Sender<Command>,
}

impl L1SenderHandle {
    /// Request [`L1Sender`] to commit provided batch. Waits until an L1 transaction commiting the
    /// batch is submitted to L1 and returns its hash.
    pub async fn commit_sync(&self, batch: L1BatchWithMetadata) -> anyhow::Result<H256> {
        let (response_sender, response_receiver) = oneshot::channel();
        self.command_sender
            .send(Command::Commit(batch, response_sender))
            .await
            .map_err(|_| anyhow::anyhow!("failed to commit a batch as L1 sender is dropped"))?;

        match response_receiver.await {
            Ok(result) => result,
            Err(_) => anyhow::bail!("failed to commit a batch as L1 sender is dropped"),
        }
    }

    /// Request [`L1Sender`] to prove provided batch. Waits until an L1 transaction proving the
    /// batch is submitted to L1 and returns its hash.
    pub async fn prove_sync(&self, batch: L1BatchWithMetadata) -> anyhow::Result<H256> {
        let (response_sender, response_receiver) = oneshot::channel();
        self.command_sender
            .send(Command::Prove(batch, response_sender))
            .await
            .map_err(|_| anyhow::anyhow!("failed to prove a batch as L1 sender is dropped"))?;

        match response_receiver.await {
            Ok(result) => result,
            Err(_) => anyhow::bail!("failed to prove a batch as L1 sender is dropped"),
        }
    }

    /// Request [`L1Sender`] to execute provided batch. Waits until an L1 transaction executing the
    /// batch is submitted to L1 and returns its hash.
    pub async fn execute_sync(&self, batch: L1BatchWithMetadata) -> anyhow::Result<H256> {
        let (response_sender, response_receiver) = oneshot::channel();
        self.command_sender
            .send(Command::Execute(batch, response_sender))
            .await
            .map_err(|_| anyhow::anyhow!("failed to execute a batch as L1 sender is dropped"))?;

        match response_receiver.await {
            Ok(result) => result,
            Err(_) => anyhow::bail!("failed to execute a batch as L1 sender is dropped"),
        }
    }
}

#[derive(Debug)]
enum Command {
    Commit(L1BatchWithMetadata, oneshot::Sender<anyhow::Result<H256>>),
    Prove(L1BatchWithMetadata, oneshot::Sender<anyhow::Result<H256>>),
    Execute(L1BatchWithMetadata, oneshot::Sender<anyhow::Result<H256>>),
}